PRODUCTS, SERVICES & CAPABILITIES FOR

SPACE

Ruggedized Interconnect Solutions
Supporting the Entire Space Ecosystem

Satellite Integration
Laser Communications
Spacecraft & Launch Vehicles
Deep Space Exploration
RF Power Handling

Table of Contents

	CarlisleIT in SpaceSatellite Integration
	Deep Space Exploration 9-10 RF Power Handling 11-12
	Cable AssembliesUTiPHASE™ Phase-Linear Microwave Cable Assemblies13-14UTiFLEX® Ultra-Light Cable Assemblies15-16TVAC T&M Cable Assemblies17
-	Wire & CableLITEflight® EP Fiber Optic Cable18Semi-Rigid Coaxial Cable19Seamless PTFE Wire Insulation Wrap20
	Overbraid & Braiding Materials ARACON® Fiber
-	ConnectorsOctax®-Solo 10 Gbps Ethernet Interconnect System23Safe-D LOCK® Connectors & Cable Assemblies24SMP-L Interconnect Series25SMPM Interconnect Series26
	Filter Connectors Why Filters in a Connector? 27 Filter Connector Options 28
	Highly Engineered SolutionsHigh-Frequency Cable Assemblies29Frequency-Optimized Cable Assemblies3016-Position SMPS Board-to-Board Interconnect31-32
_	LEO Satellite SolutionsFast Steering Mirror Sensors35New Space & Quick-Connect SMP-LOK Cable Assemblies36PCB Multiport Quick-Connect Harness37Multiport Quick-Connect Harness38
	Standards & Qualifications for Space

CarlisleIT in Space

Our broad range of interconnect solutions has been ensuring mission success for decades in the space industry. From spacecraft and launch vehicles to satellite integration and ground support equipment, our RF Connectors, Cable Assemblies, Filter Connectors, Seamless Wire, Fiber Optics, and other specialized products provide high performance and reliability in the harshest and most demanding environments.

Here at CarlisleIT, we design and test our products to meet the requirements of extreme vibration during launch, thermal cycling, outgassing, and radiation once payloads are operational in orbit. In space, there is no option to repair or replace interconnect products — they need to work the first time, every time.

Whether your mission is deep space exploration and discovery or a Low Earth Orbit constellation supporting the "space internet," we have you covered.

50+ Years of Space Heritage

Supported Programs by:

ESA **JAXA**

NASA

Satellites: NEO/LEO MEO **GEO**

Deep Space Missions:

Voyager **MAVEN** Cassini Mars Rover

Qualified for:

COSMIC-2 James Webb Space Telescope **JPSS**

Europa GRACE GOES

LUCY **Orion Artemis**

This document contains information on various CarlislelT products that are export restricted by the Export Administration Regulations ("EAR"). The brochure does not contain any technology that is controlled for export by the EAR, as the brochure has been published by CarlislelT pursuant to EAR Section 734.7. The export of the hardware depicted in this brochure may require a license for export under the EAR to intended end users, and, in some cases, there may be a

Fast Steering Mirror (FSM) Sensors

ATTITUDE DETERMINATION & CONTROL

Ganged Interconnect Solutions Ganged CoreHC[™]

PAYLOAD/HIGH-VOLTAGE CONTROL

High-Speed Data Connectors **Filter Connectors Precision RF Connectors**

ELECTRICAL POWER SYSTEM

Board-to-Board RF Connectors Blind-Mate High-Power Interconnects

COMMAND & DATA HANDLING

SMP/SSMP Bullets Multi-Way Quick-Connect RF Harness

COMMUNICATION SYSTEM

UTiFLEX® Ultra-Light RF Assemblies UTiPHASE™ Phase-Linear RF Assemblies

Launch Vehicles

LAUNCH ABORT SYSTEM

Fire-Resistant, Moisture-Resistant, **SWAMP Wire**

Harsh-Environment **High-Energy Optical Cable**

Blind-Mate High-Power Interconnects

Filter Connectors for EMI Protection

Ruggedized Fiber **Optic Cable**

Semi-Rigid Cable

Conformable RF **Cable Assemblies**

Ultra-Flexible High-Voltage **Shielded Composite Cable**

SERVICE & NAVIGATION MODULES

Filter Connectors for **EMI Protection**

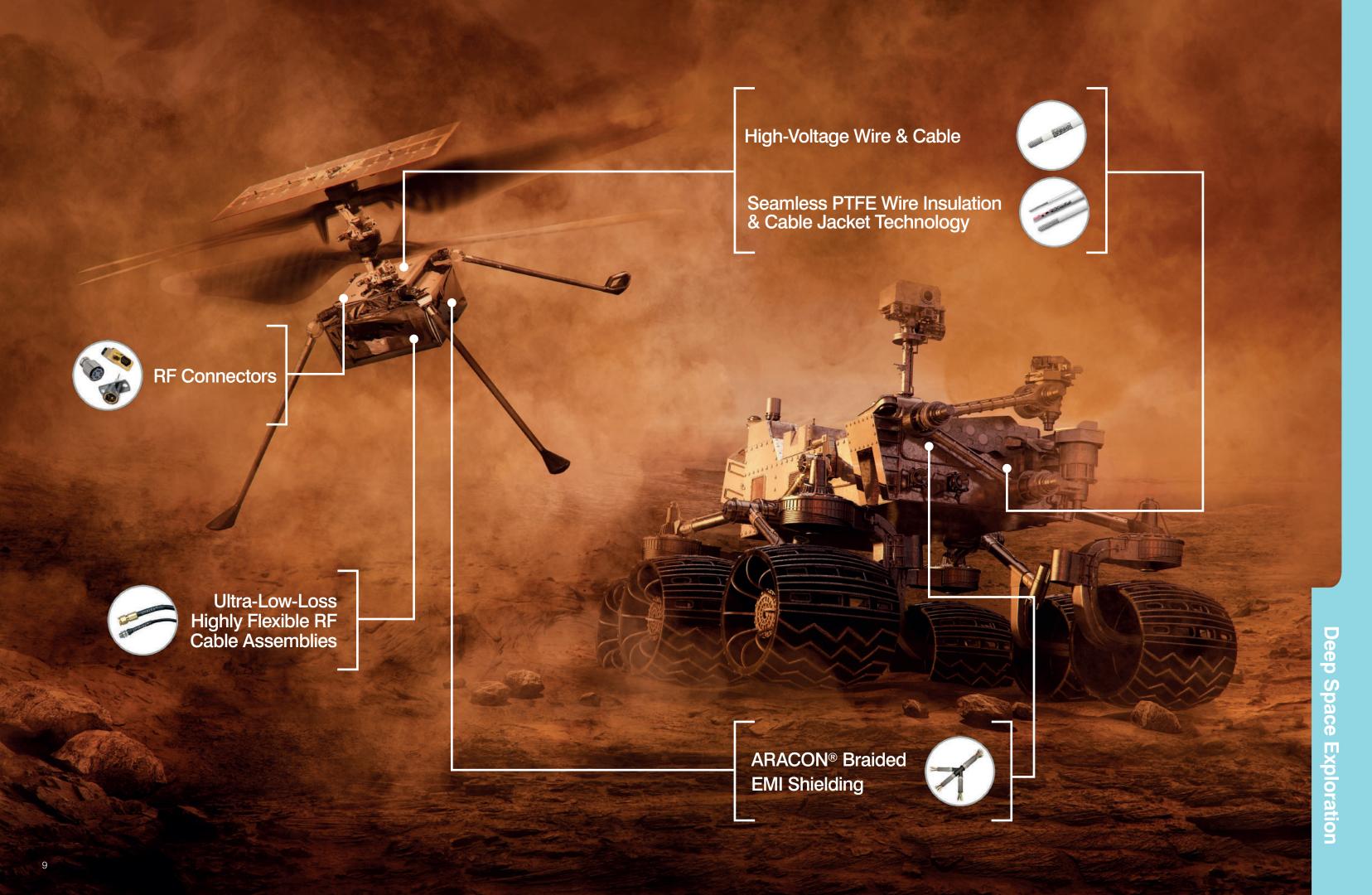
Ganged CoreHC[™]

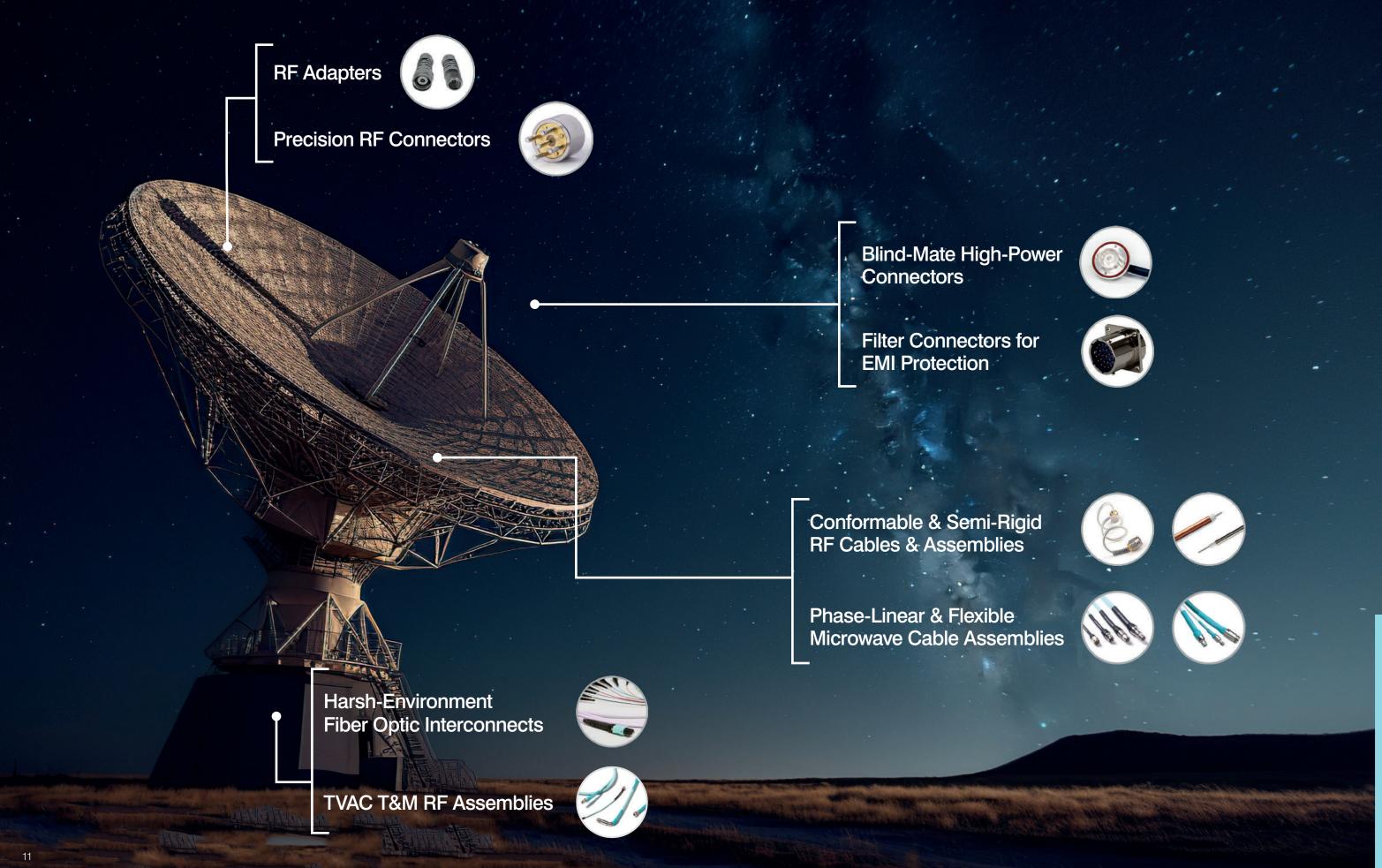
Precision RF Connectors

RF Adapters

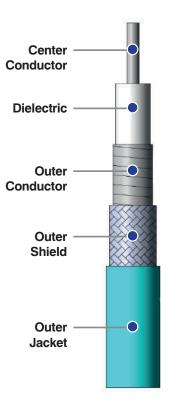
Flexible & Phase-Linear Microwave Cable Assemblies

Flexible & Phase-**Linear Microwave** Cable Assemblies




Blind-Mate High-Power Interconnects

The UTiPHASE™ family of flexible coaxial microwave cables flatten the phase vs. temperature response curve and are designed for use in phase-critical flexible cable applications.


UTiPHASE™ Phase-Linear Microwave Cable Assemblies

Our UTiPHASE™ line combines every traditional feature of UTiFLEX with a thermally phase-stable proprietary dielectric that eliminates the PTFE "knee." UTiPHASE also leverages the same cable assembly terminations and proven connector families that have made UTiFLEX famous, thus saving money, validation schedules, and lead times.

FEATURES	BENEFITS
Linear thermal phase performance	Minimizes system phase variationIncreases accuracyEliminates PTFE "knee"
Naturally ruggedized with sturdy concentric core	Improved reliability Improved crush-resistance
Vertically integrated	Controlled fluoropolymer performance Reliable delivery
Typical velocity of propagation 80%	Excellent insertion loss Drop-in replacement for many competing cables
Universally configurable with standard connectors and armor	Proven UTiFLEX® assembly reliability and performance Reduced lead time using existing assembly hardware and techniques

UTiPHASE Part Number	Center Conductor Material	Outer Shield Material	Outer Jacket Material	Outer Diameter (in)	Nominal Weight (g/ft)
MCX088D	SPCW	ARACON	ETFE	0.088	3.3
UFP088D	SPCW	HSSPC	FEP	0.088	4.0
MCX142A	SPC	ARACON	ETFE	0.142	8.4
UFP142A	SPC	SPC	FEP	0.142	9.5
MCX205A	SPC	ARACON	ETFE	0.250	15.9
UFP205A	SPC	SPC	FEP	0.250	18.7
MCX311A	SPC	ARACON	ETFE	0.311	35.6
UFP311A	SPC	SPC	FEP	0.311	45.7

The **Center Conductor** types, which are either silver-plated copper (SPC) or silver-plated copper-weld steel (SPCW), meet the requirements of MIL-DTL-17. The **Dielectric** used on the cables detailed here consists of a proprietary fluoropolymer. The **Outer Conductor** is silver-plated copper (SPC) per ASTM B-298. The **Outer Shields** are either silver-plated copper (SPC) per ASTM B-298; ARACON (silver-plated polyparaphenylene terephthalamide) for up to 15% weight savings; or high-strength, high-conductivity copper alloy (HSSPC) per UNS C17510, silver coated per ASTM B-298. The **Outer Jacket** is either extruded fluorinated ethylene propylene (FEP) per MIL-DTL-17, Type IX; or ethylene tetrafluoroethylene (ETFE) in accordance with ASTM D-3159.

Fig 2: Multiple lots of cable were tested for electrical length from -65 °C to 100 °C with startling results. The abrupt phase change and total change inherent in PTFE dielectrics was eliminated. Figure 2 shows the typical phase change for UTiPHASE cables versus flexible cables with ultra-low-

density PTFE dielectric.

Fig. 3: Direct comparison of the UTiPHASE product and cables manufactured with other dielectric materials reveals superior performance in maintaining electrical phase length. Figure 3 shows the typical phase change for UTiPHASE cables versus flexible cables with various PTFE dielectrics.

Electrical Performance Comparisons

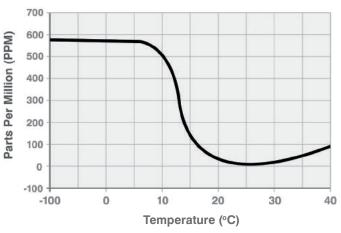


Fig 1: Typical phase change vs. temperature for cables with ultra-low-density PTFE dielectric

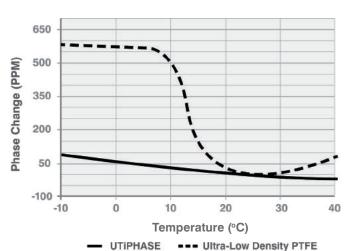


Fig 2: Typical phase change vs. temperature for flexible microwave cables

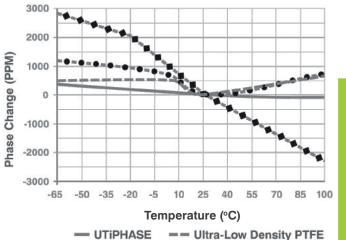


Fig 3: Typical phase change vs. temperature for flexible microwave cables with different dielectrics

-O- Low Density PTFE -O- Solid PTFE

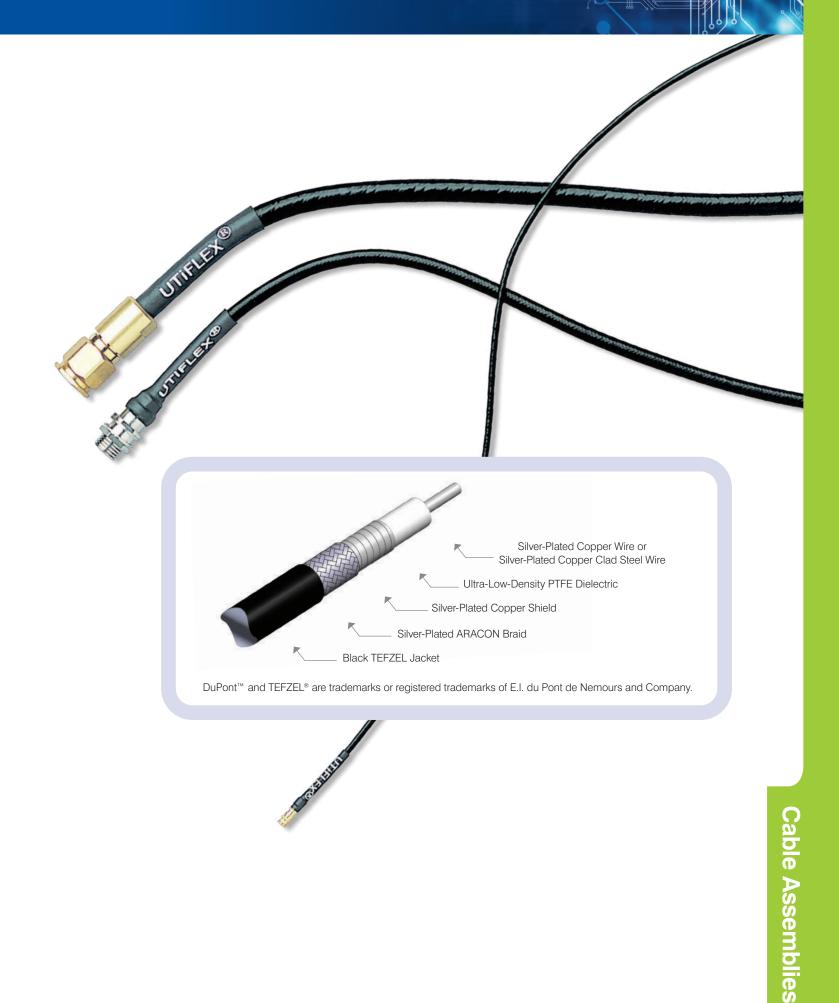
UTiFLEX® Ultra-Light Cable Assemblies

UTiFLEX® Ultra-Light cable assemblies are optimized for spaceflight applications. They provide the lightest weight, lowest insertion loss, and best radiation resistance in a flexible cable construction. The cables utilize our ARACON for the outer shield, an ultra-low-density PTFE for the dielectric, and a DuPont™ TEFZEL® jacket. If required, cable assemblies are manufactured in a Class 10,000 clean-room by certified solder technicians.

Key Features

- » ARACON® outer shield for superior weight savings
- » Up to 25% weight savings for spaceflight applications
- » Low VSWR (1.25:1 to 40 GHz typical)
- » Excellent shielding effectiveness
- » Precision phase matching

Space Qualified


- » J-STD-001 Space Addendum Certified assemblers and inspectors
- » Class 10,000 clean-room assembly processes
- » Low-outgassing materials (<1% TML, <0.1% CVCM per ASTM E-595)</p>
- » Radiation resistant up to 100 Mrads
- » Real-time X-ray capability

MECHANICAL CHARACTERISTICS								
UTIFLEX TYPE	MCJ088D	MCJ1151A	MCJ142A	MCJ185A	MCJ205A	MCJ311A		
Outer Diameter in (mm)	0.088 (2.24)	0.115 (2.92)	0.142 (3.61)	0.185 (4.70)	0.205 (5.21)	0.310 (7.87)		
Center Conductor Type	Solid	Solid	Solid	Solid	Solid	Solid		
Maximum Weight g/ft (g/m)	3.6 (11.8)	5.5 (18.0)	8.8 (28.9)	12.4 (40.7)	16 (52.5)	35 (114.8)		
Minimum Bend Radius in (mm)	0.25 (6.35)	0.375 (9.53)	0.38 (9.65)	0.38 (9.65)	0.5 (12.70)	1.25 (31.75)		

ELECTRICAL CHAR	ACTERISTIC	cs					
Impedance (Ω)		50	50	50	50	50	50
Frequency Range		DC - 18 GHz	DC - 55 GHz	DC - 40 GHz	DC - 32 GHz	DC - 26.5 GHz	DC - 18 GHz
Velocity of Propagation		80%	82%	83%	83%	84%	83%
Capacitance pF/ft (pF/m)		25.5 (83.7)	24.75 (81.2)	24.5 (80.4)	24.5 (80.4)	24.2 (79.4)	24.5 (80.4)
Shielding Effectiveness	@ 1 GHz	>100 dB	>100 dB	>100 dB	>100 dB	>100 dB	>100 dB
	@ 1 GHz	0.20 (0.66)	0.11 (0.35)	0.10 (0.33)	0.08 (0.26)	0.07 (0.23)	0.05 (0.16)
	@ 10 GHz	0.66 (2.17)	0.48 (1.57)	0.33 (1.08)	0.27 (0.89)	0.23 (0.75)	0.15 (0.49)
	@ 18 GHz	0.89 (2.92)	0.64 (2.11)	0.44 (1.44)	0.36 (1.18)	0.32 (1.05)	0.21 (0.66)
Maximum Insertion Loss	@ 26.5 GHz	1.13 (3.70)	0.79 (2.58)	0.54 (1.77)	0.44 (1.44)	0.39 (1.28)	-
dB/ft (dB/m)	@ 32 GHz	1.25 (3.93)	0.86 (2.83)	0.60 (1.97)	0.49 (1.61)	-	-
	@ 40 GHz	1.42 (4.65)	0.97 (3.18)	0.68 (2.23)	-	-	-
	@ 55 GHz	1.70 (5.57)	1.14 (3.75)	-	-	-	-
	@ 70 GHz	1.94 (6.38)	-	-	-	-	-
Dhaga Ctability va Flavyra*	@ 10 GHz	2°	2°	2°	2°	1°	3°
Phase Stability vs. Flexure*	@ 18 GHz	2°	3°	3°	6°	2°	5°

^{*}Cable wrapped once around a 3" diameter mandrel

ENVIRONMENTAL CHARACTERISTICS						
Temperature Range	-150 °C to 165 °C					

Key Characteristics

- » Low outgassing per ASTM E-595 (<1% TML and <0.1% CVCM)</p>
- » Temperature Range: -65 °C to 165 °C (typical, consult factory for individual types)
- » Ideal phase performance due to ultra-low-loss dielectric materials
- » Superior cable mechanical stability and connector captivation techniques to address increasing thermal extremes of the space market
- » Clean-room manufacturing and real-time X-ray upon request
- » High-power configurations available. All high-power TVAC T&M cable assemblies are manufactured in a clean-room environment to full space-grade standards. Contact us for specific power/frequency requirements.
- » Individually bagged to prevent post-assembly contamination
- » Vented connectors

PART NUMBER DESIGNATION (EXAMPLE)								
Base Part Number Phase Matching (optional)								
UFB142A-0-XXXX-20V20V TV AM								
XXXX is cable assembly length in 0.1" increments. Length Tolerance = -0 / +0.5" (XXXX <= 100") Length Tolerance = -0 / + 0.5% (XXXX >= 100")								
If absolute phase matching is required, then add "AM" code. For phase-matched assemblies, length tolerance is not applicable.								

LITEflight® EP Fiber Optic Cable

Ruggedized Simplex

We have many options for radiation-hardened, single-mode, and multi-mode fiber optic cable compliant to MIL-PRF-49291. LITEflight® EP (Enhanced Performance), our family of aerospace-grade fiber optic cables, provides all the performance and benefits of its predecessor, LITEflight HD, but with:

- » Lower loss
- » Tighter bend radius
- » Improved thermal stability
- » Better handling during termination and installation


Unlike tight-structured cables, LITEflight EP semi-loose-structured cables are compatible with all commercially available fiber optic termini and connectors. It is available in multiple sizes, configurations, and temperature ratings to 260 °C in order to meet the most demanding application requirements.

LITEflight EP	NFO(EP)-125-1	NFO(EP)-125-3M4	
Characteristics	Typical Value	Typical Value	
Outside Diameter	1.8 mm	1.8 mm	
Cable Weight	4.6 kg/km	4.6 kg/km	
Minimum Bend Radius			
Short Term (Installation)	6.0 mm	6.0 mm	
Long Term (Operation / Storage)	9.0 mm	9.0 mm	
Attenuation			
850 nm	2.8 dB/km	2.9 dB/km	
1300 nm	0.6 dB/km	0.8 dB/km	
Temperature Cycling	0.10 dB∆/30 m	0.10 dB∆/10 m	
Thermal Shock	0.10 dB∆/30 m	0.10 dB∆/10 m	
Buffer Push-In Force	2.0 N/.45 mm	2.0 N/.45 mm	
Cable Kink Resistance			
6.3 mm Loop Diameter	0.18 dB∆	0.19 dB∆	

^{*}All testing performed in accordance with EN-3745 or ARINC 802 methods.

Simplex Actual Size / 1.8 mm

Ruggedized Simplex	Actual Size / 2.74 mm

Semi-Rigid Coaxial Cable

Semi-rigid coaxial cables are available in a wide variety of sizes, materials, and characteristic impedances. To be considered a semi-rigid coaxial cable, the cable must employ a solid metallic tube for the outer conductor. Most semi-rigid coaxial cables are less than 0.250" in diameter; however, some select cables are as large as 0.500". A silver-plated copper center conductor, polytetrafluoroethylene (PTFE) dielectric, and copper outer conductor are the most common materials. Impedances are available from 5 to 100 Ω . Typical maximum operating temperatures range from 125 °C to 250 °C.

Key Characteristics

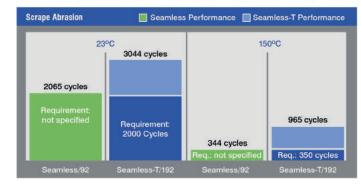
Semi-rigid coaxial cables are used to transmit and receive microwave signals up to 110 GHz. These cables are the best pure microwave transmission medium available in the world.

- » RF shielding in excess of -130 dB
- » Lowest attenuation and lightest weight for any given geometry
- » Unequaled impedance control and VSWR performance
- » Smallest overall diameters available in a microwave cable
- » Very tight bend radii allow utilization in the tightest configurations
- » Environmentally sealed with no concern over jacket cuts or abrasions
- » Numerous connector options available off the shelf from many different suppliers

Because semi-rigid coaxial cables can be precisely formed, they allow maximum packaging efficiency with no wasted space. While semi-rigid cables will hold their shape once formed, most are still pliable enough to provide some flexibility during system integration.

Semi-rigid coaxial cables are the benchmark against which all other coaxial cables are compared.

Seamless PTFE Wire Insulation Wrap


Our Seamless technology has been designed and used on several space applications. It is available in a variety of sizes and configurations, including ultra-light weight, ultra-high strength, thermocouple, single or multiconductor, shielded, unshielded, matched impedance, and even qualified to International SSQ 21655 Space Station MIL-STD-1553 databus specification.

Seamless Comparison Charts

PRODUCT CHARACTERISTICS	SEAMLESS TAPE-WRAP /80 - /92	SEAMLESS TAPE-WRAP /180 - /192
Scrape Abrasion	• •	•••
Hydrolytic Resistance	• •	• •
Wet Arc Propagation Resistance	•••	•••
UV Laser Marking	• •	•••
Strips Easily and Cleanly	• •	• •

Better • • Best • • •

Seamless and Seamless-T Products Exceed AS22759/92 and /192 Requirements

ARACON® Fiber

ARACON® fiber combines the strength, light weight, and flexibility of genuine DuPont™ Kevlar® with the electrical conductivity and corrosion resistance of nickel and solderability of silver. When braided or woven, the natural tendency for the fine, lightweight fiber is to spread out for high optical coverage. This translates into superior shielding effectiveness when compared to copper wire.

ARACON braids are available in standard sizes ranging from 0.062" to 2" inner diameter with both a nickel and silver finish. Also available are blends of ARACON with plated copper wire. The blended braids enhance lower frequency shielding performance and provide additional lightning protection while still offering substantial weight savings compared to the traditional full-metal shield.

FEATURES	BENEFITS
Reliable	Military and spaceflight qualifiedWill perform in the harshest environments
Industry-Leading Electrical Conductivity	Low transfer impedance Better RF shielding
Lightweight	Up to 80% lighter weight than copper in typical applicationsSave fuel, more payload
Stronger Than Steel	Built on DuPont Kevlar No more broken wires during installation
Flexible	 Feels like a textile Easier to shape into the most difficult configurations Longer flex life Lower maintenance cost
Affordable	The most cost-effective composite solution Will satisfy almost any cost-weight benefit analysis

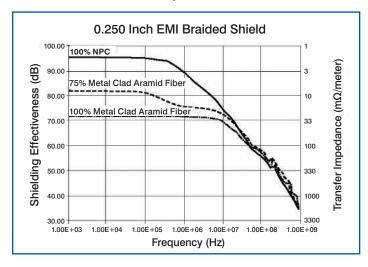
WEIGHT: ARACON-BRAIDED EMI SHIELD							
		Weight Savings					
Inner Diameter	Nickel-	-Plated	Silver-	Plated			
in (mm)	100%	Blend	100%	Blend			
0.125 (3.18)	62%	43%	66%	49%			
0.250 (6.35)	62%	44%	66%	49%			
0.500 (12.70)	62%	43%	66%	48%			
0.750 (19.05)	63%	45%	67%	50%			
1.00 (25.40)	81%	72%	83%	75%			
1.50 (38.10)	81%	72%	83%	75%			

RESISTIVITY: ARACON-BRAIDED EMI SH										
	Resistance (mΩ/ft)									
Inner Diameter	Nickel-	Nickel-Plated								
in (mm)	100%	Blend	100%							
0.125 (3.18)	75.9	26.8	75.9							
0.250 (6.35)	36.7	9.1	36.7							
0.500 (12.70)	17.8	4.4	17.8							
0.750 (19.05)	11.9	5.6	11.9							
1.00 (25.40)	8.5	4.3	8.5							
1.50 (38.10)	5.7	1.3	5.7							

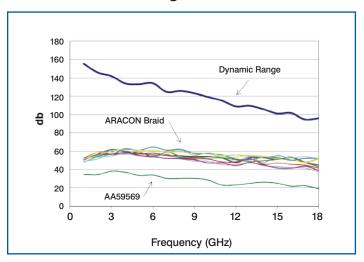
Capabilities

- » Manufacturing
- » Electro-less and electrolytic plating
- » Braiders: 8, 16, 24, 64, 72, and 96 carrier
- » Class 10,000 clean-room
- » Fully equipped metallurgical laboratory
- » Tensile tester
- » Transfer impedance test set
- » RF shielding test to 18 GHz
- » Environmental testing thermal and corrosion
- » Optical, X-ray, and SEM material analysis

ELD


18.8 9.1

4.42.92.4


1.3

High-speed braiding

ARACON Transfer Impedance




ARACON RF Shielding Effectiveness

Hidden EMI Shielding Advantage

Conformal Coverage Targeting 90%

In-house RF shielding & transfer impedance testing

Performance Summary

Thermal Environments

- » Operating range: -65 °C to 150 °C intermittent exposure to 200 °C
- » Thermal aging: 150 °C for seven days
- » Thermal shock: 50 cycles full operating range

Altitude

- » Operating sea level to vacuum; no change in DC resistance
- » Low-outgassing material

Corrosive Environments

- » Nickel material meets 500 hr salt fog and 48 hr sulfur dioxide
- » Broad range of resistance to fluid immersion

Lightning Susceptibility

- » Level 3 to Level 5 multistrike capability per ANSI/EIA 364-75 and RTCA DO-160
- » Capability exceeds 25kVA Waveform 5B

Flammability

» Does not burn when tested per FAA, Boeing, and Airbus methods

Smoke Density & Toxicity

» Complies with FAA, Boeing, and Airbus requirements

Flexibility

» Life cycle of over 50,000 cycles over 180° arc

Left to Right: Octax-Solo JRN, Octax-Solo IR, Octax-Solo plug, Octax-Solo flange-mount receptacle

Octax®-Solo 10 Gbps Ethernet Interconnect System

Our Octax®-Solo 10 Gbps Ethernet Connector is a single-port, standalone connector designed for a wide variety of aerospace and military applications. The Octax connector:

- » Uses innovative inserts that isolate each twisted pair and contact, virtually eliminating near-end crosstalk
- » Features cable and twists that are maintained extremely close to the contacts, minimizing characteristic impedance mismatch
- » Delivers 10x the transmission speed (10 Gbps signal) and 2x the density compared to Quadrax-type solutions

FEATURES	BENEFITS
Gigabit and 10 Gb Ethernet data transfer speed	Allows for higher data quantities to transfer at quicker speeds covering a variety of 1 Gb applications and emerging 10 Gb needs
Field repairable	Designed for easier and less costly on-site termination repair
Uses standard 22D crimp contacts (M39029)	Standard off-the-shelf contacts are readily available and require no special tooling
Small form factor	Critical space savings for highly dense applications
Anti-decoupling/self-locking mechanism for rugged environments	Connector will not disconnect/uncouple in a high-vibration application

Suggested Applications

- » Single-port 10 Gbps Ethernet connector (compatible with Gigabit series Ethernet cables)
- » Aerospace & military
 - Avionics
 - IFEC
 - High-definition video displays
 - Data loading
- » Any high-speed Ethernet application

Part Number & Description

Part Number	Description	Finish
OCTAX-SOLO-FMR	Flange mount receptacle connector	Ni PTFE
OCTAX-SOLO-JNR	Jam nut receptacle connector	Ni PTFE
OCTAX-SOLO-IR	Inline (flange-less) receptacle connector	Ni PTFE
OCTAX-SOLO-P	Plug connector	Ni PTFE
OCTAX-SOLO-FM-PCB*	Straight PCB flange mount receptacle connector	Ni PTFE
OCTAX-SOLO-FMR-W	Flange mount receptacle connector	CADMIUM OD
OCTAX-SOLO-JNR-W	Jam nut receptacle connector	CADMIUM OD
OCTAX-SOLO-IR-W	Inline (flange-less) receptacle connector	CADMIUM OD
OCTAX-SOLO-P-W	Plug connector	CADMIUM OD

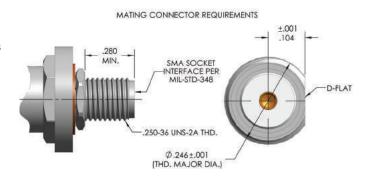
^{*}Jam nut design also available

Safe-D-LOCK® Connectors & Cable Assemblies

Safe-D-LOCK® connectors offer a reliable alternative to conventional self-locking connectors, adhesive compounds, or safety wire. The unique design installs quickly without wasting valuable mass or space in the host system.

Safe-D-LOCK locks to the D-FLAT on the mating connector, providing a true lock that cannot be compromised when the cable is rotated.

Safe-D-LOCK technology is contained entirely in the coupling nut of the connector, which allows the feature to be easily ported into different implementations, including low-profile, right-angle connectors.



NOTE: Conventional self-locking connector mass: 10.3 g REF

Key Characteristics

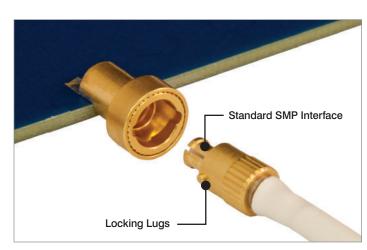
- » Eliminates post-mate staking adhesives or FOD-prone safety wires
- » Flight heritage cryogenic operation to 20 Kelvin
- » Mated interfaces overcome cable integration torque, guaranteeing glitch-free signal integrity
- » 50% weight savings over conventional self-locking connectors
- » Modular design ports easily and economically to all SMA, 2.92 mm, and 3.5 mm connector families

BODY MATERIAL: STEEL OR BeCu

Cryogenic Applications:

The BeCu center conductor and stainless-steel jacket, which provide excellent thermal conductivity and dimensional stability, partners with the Safe-D-LOCK mechanical locking feature in lieu of adhesive staking, which will crack and fail.

SMP-L Interconnect Series


The introduction of push-on blind-mateable connectors, such as the SMP, galvanized the RF/Microwave industry as their use enabled designers to increase package density. This created the ability to stack PC boards while also simplifying the assembly and test of these designs.

We have advanced the design of traditional SMP connectors even further with our line of SMP-L connectors. These connectors incorporate Secure-Lok™, a patented locking mechanism, into the standard SMP interface, which reinforces holding power, making them:

- » Less susceptible to vibration and other environmental factors present in high-vibration, rugged applications
- » A reliable alternative to threaded connectors

Features

- » Secure-Lok mechanism (US Patent No. 8579659)
- » Frequency range: DC 40 GHz
- » Superior ruggedability and performance compared to standard push-on connectors
- » Fully compatible with SMP standard product line

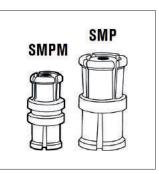
Secure-Lok Mechanism

SMPM® Interconnect Series

SMPM Connector Product Line

We have designed the SMPM® Connector product line to further improve the package density of RF/Microwave systems. With an interface about 30% smaller than its predecessor, the SMPM Connector is now an industry standard (as outlined in the MIL-STD-348 document) for RF/microwave applications and has enabled design engineers to increase design performance and complexity while improving form factor.

The durable construction and ability to tolerate radial and axial misalignment allows for a blind-mate interconnect solution capable of withstanding multiple engagement/disengagement cycles without degradation in electrical performance.


Due to its high-frequency performance and blindmate configuration, the SMPM Connector is a standard interface in many applications, including:

- » Antennas
- » Broadband
- » Wireless
- » Military
- » Instrumentation

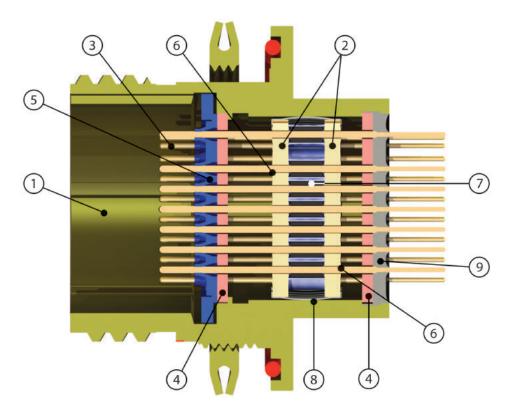
Features

- » DC 65 GHz frequency range
- » 50 Ω impedance
- » Blind-mate configuration
- » MIL-PRF-39012 compliant
- » Ability to withstand radial/axial misalignment
- » Board-mount, field replaceable, bullets, hermetic, and cable connector configurations
- » Custom connectors available

Specifications

The SMPM Connector is about 30% smaller than its predecessor, the SMP Connector.

Left: SMPM Female to 2.92 mm Male Adapter (P123-1CCSF) Right: SMPM Female to .047" Cable (P107-1CC)


Parameter		Specifications				
Impedance		50 Ω				
Frequency F	Range	DC - 65 GHz*				
VSWR		1.02 + 0.012 x F (GHz)				
Insertion Los	SS	0.04 x √F (GHz)				
DWV		325 Vrms				
Insulation Re	esistance	5000 MΩ (min)				
RF High Pot		190 Vrms @ 5 MHz				
Force to	Detent	6.5 lb. (max)				
Engage	Smooth Bore	2.5 lb. (max)				
Force to	Detent	4 lb. (min)				
Disengage	Smooth Bore	1.5 lb. (min)				
Radial Misal	ignment	+/010"				
Axial Misalig	ınment	0.000/0.010"				
Temperature	Range	-55 °C to 165 °C				
Thermal Sho	ock	MIL-STD-202, Method 107, Cond C				
Moisture Re	sistance	MIL-STD-202, Method 106, except step 7b				
Corrosion		MIL-STD-202. Method 101, Cond B				
Vibration		MIL-STD-202, Method 204, Cond D				
Shock		MIL-STD-202, Method 213, Cond I				

Why Filters in a Connector?

Theory & Types

If your circuitry is suffering the ill effects of interference from radio waves, stray transmissions, electric power lines, or electric motor noise, you are experiencing EMI (electromagnetic interference). This leads the circuit designer to consider EMI filters. A second issue, EMP (electromagnetic pulse), is driven from the catastrophic effects of extremely high voltage and short duration pulses of energy. Traditionally, concern for nuclear attack was high priority. Now, in the military and aerospace environments, protection from lightning strikes and similar high-energy sources is a top priority. Protection from this sudden, unwanted overvoltage situation is more commonly referred to as TVS (transient voltage suppression).

EMI and EMP are looking for a path to your circuits, and that path is usually an antenna or a cable set running to the circuit that is acting as an antenna. The key warrior against EMI is a capacitor element. Typically, we battle transient voltage with a Zener diode. Where is the best place to put these elements? Often military and avionics boxes house the critical circuitry. If the cable set is the antenna, then the best placement for the filter is at the cable/box interface, preventing the unwanted signals from entering the system. A multi-pin filter or TVS connector is the ideal solution.

Typical "Pi" filter construction

- 1. Shell Plated aluminum alloy
- 2. Capacitors Ceramic, planar
- 3. Contacts Brass for pin contacts; copper alloy for socket contacts; gold plate finish
- **4. Insulators** High-grade thermoplastic/thermoset or epoxy glass laminate
- 5. Interfacial/PeripheralSeal Typical constructionis fluorosilicone
- 6. Solder
- 7. Inductors Ferrite beads
- **8. Ground Spring** Beryllium copper plated, 360° orientation inside of shell
- 9. Epoxy

Filter Connector Options

Circular Filter Connectors

For EMI Protection

Our Circular Filter Connectors meet the requirements of their

specific connector MIL-SPECS, including shock and vibration

most popular circuits, C, CL/LC, Pi, and T. They are constructed

capacitance values, circuits, feedthroughs, and/or grounds can

performance. All thermal processes are profiled and controlled,

be incorporated into the arrangement to produce the desired

at temperature. These low-pass filter connectors include the

using planar filter technology for maximum strength and

high performance, from low to high frequencies. Multiple

cleanliness checked, and electrical testing of 100% of the

Left to Right: 26482, 38999 III. 38999 IV

Performance, Benefits, and Certifications

- » Planar design
- » Sealed (for aqueous cleaning)
- » Ferrite immobilization
- » Can offer solderless designs
- » Space qualified
- » Can incorporate filtering plus transient voltage suppression

Rectangular Filter Connectors

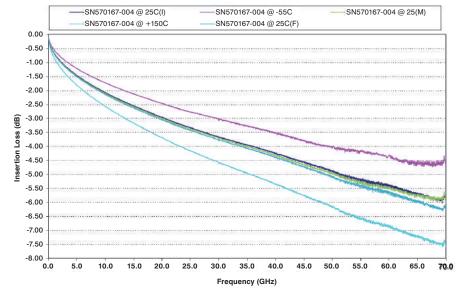
contacts is done to ensure a quality product.

For EMI Protection

Left to Right: D-Sub, Micro-D, D-Sub Right Angle

Our D-Sub and Micro-D Filter Connectors meet all the requirements of MIL-PRF-24308 and MIL-PRF-83513 while providing filtering in accordance with the attenuation curves noted here. MIL-PRF-24308 connectors (standard and high density) and MIL-PRF-83513 are manufactured in all layouts offering maximum contact density in a minimum of space.

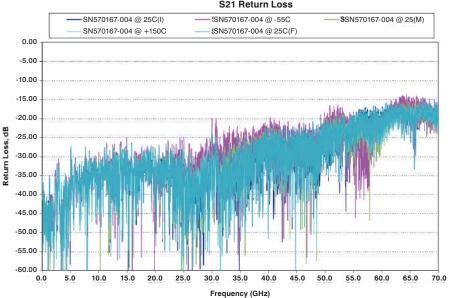
Both series of connectors are offered with the standard variations in mounting hardware, standard straight or right angle contacts and PCB, solder cup, and crimp termination.


Performance, Benefits, and Certifications

- » Planar design
- » Machined shells
- » Ferrite immobilization
- » Space qualified
- » Can incorporate filtering plus transient voltage suppression
- » Can meet DO-160 lightning requirements

High-Frequency Cable Assemblies

- » MCJ088D 70 GHz S-parameters over temperature
- » Increasing operational frequency for qualified MCJ0888D cable
- » 1.85 mm interfaces maintain connector interface control and baseline electrical performance through 200 thermal cycles, -50 °C to 100 °C, and post 200 thermal cycle S-parameters versus temperature

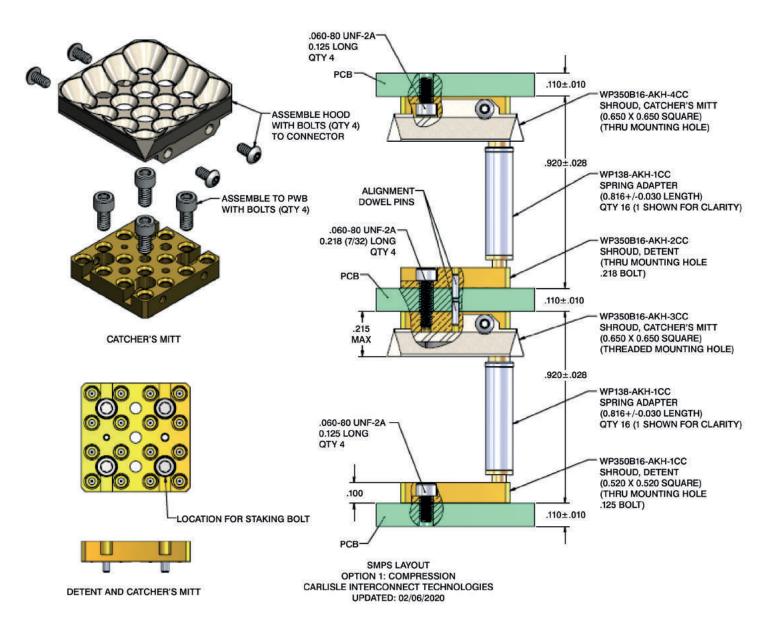

MCJ088D-0-0394-C00CQ0 (905435) Post 200 Thermal Cycles, Test vs. Temp_Cycle #3 S21 Insertion Loss

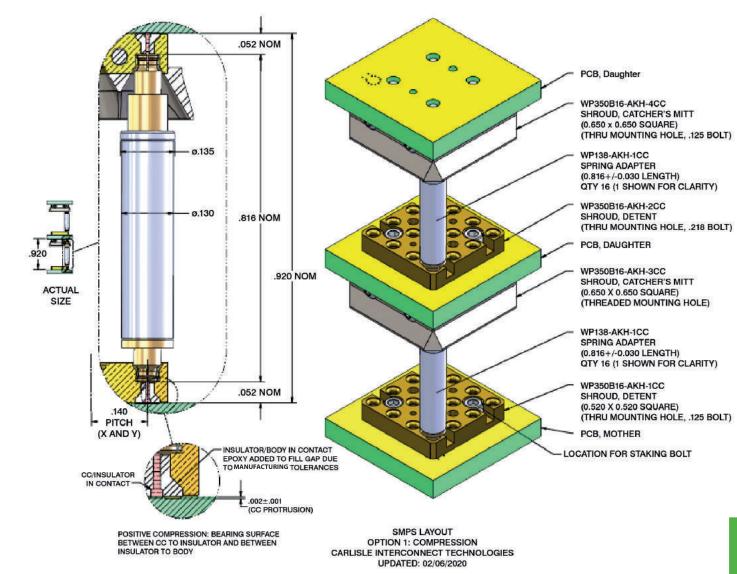
Precision-formed ends for optimal electrical performance

MCJ088D-0-0394-C00CQ0 (905435) Post 200 Thermal Cycles, Test vs. Temp_Cycle #3 S21 Return Loss

Frequency-Optimized Cable Assemblies

- » MCJ115A 55 GHz flexible cable assembly configurations
- » Improved dB/ft (dB/m) vs. 0.088" diameter to address V-band operation




Precision 2.4 mm connectors

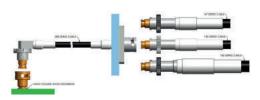
Swept and block right-angle connector options

			UTIFL	EX PRODI	JCT SPECIFI	CAT	ION			_	Part Desc MCJ1		Rev.	
=			4	and Standards		T	March 1997				IVIC)1.	Mechanical / Physical Properti		
1	Center Conductor			plated copper per At	TM 8-298	1	272					Temperature Range (°C)	-65 / +125	
85	6354400530009				AVV 0.061 0.064 0.00 0.00 0.00	1		(5	0			Center Conductor Diameter [inch[mm]] 0.0	296 0.75)	
2	Dielectric			sity PTFE in accordan	22 000 28 1985 17 7.50	-	-		0				820 2.08) 900 2.29)	
3	Outer Conductor	8	Sive	oplated copper per At	TM B-298	1		4		(3)			105 2.67)	
4	Outer Shield	1 2	ilver plated	poly-para-phenylene	terephthalamide	1				a		Jacket Wall Thickness (inch(mm)) ≥ 0.	004 (0.102)	
5	Jacket	ETFE	Fluoropolyme	er, black in color, in accor	sance with ASTM D-3159					0	_	Min Static Bend Radius [inch(mm)] 0.	5.5 (18.0) 375 (9.53)	
6	Cable Marking None							R	D	Flex Life - Snake [®] (Cycles) Center Conductor Strands	50,000			
						Ì					9	1119-1109-25-00-10-10-10-1	-5.40	
	-		NAME OF TAXABLE PARTY.	Properties										
	loss and VSWR sl	hall remain wi	thin the spe	mbly shall show no da cified limits, and con- ified limits of MIL-PRI	ector interface							Typical Phase Change vs. Temp	erature ⁵	
	Thermal Shock			, Method 107, 20 Cyc		1						750	/	
_	Aging Stability Vibration			Paragraph 4.8.16, +17 -202, Method 204, Te		-						600	1	
	High Pressure	Pres			0 +/- 2 bar for 12 hrs.	ł								
	Low Pressure			AE-AS-13441, Method	Utwoterste	1						8 490		
	Humidity			B10, Method 108, Pro]	P	hase vs. Bend – Co	ontact Carlisle	for specification		N 300		
	Salt Fog			D-810, Method 509.	and the second s	CHICAGONO CON COMPONICIO MANDO CANDA DO CANDA COMO C					25 150			
-	Sand and Dust ess Crack Resistance			D-810, Method 510, IIL-DTL-17, Paragraph		-								
341	Cold Bend Test	110		IIIDTL-17, Paragraph		1								
Cold Bend Test Outgassing		Less than 1% TML and 0.1% CVCM								-150				
Radiation Resistance 100 Mrads								-900						
						1						-40 -40 -20 0 20 40	60 80	
				VSWR ^{6,7} at 20°C								Temperature *C		
Fre			dB/m	Watts (CW)	VSWR	-					10	52-10 1-1-1-1		
_	0.5	11.0	(0.35)	260 183	1.20	1 2	000	Maximu	m Power Ha	ndling	50	Maximum Insertion Loss		
	5	34.0	(1.10)	81	1.20	1 "	300					1.1		
	10		(1.57)	57	1.20	1						2		
	18 26.5		(2.11)	42 35	1.20 1.25	1						0.9		
_	40		(3.18)	28	1.30	1	1					01		
_	50		(3.57)	25	1.30	8						0.7		
_	55		(3.75)	25	1.30	Ę,	/O. 100					# as		
	Impedance (O		ctrical Pro	perties 5/	ř:	- 8								
	Velocity of Propag			82	0	1						0.4		
	RF Shielding			≥ 10		1	-					03		
Capacitance [pF/Ft pf/m)] 24.75 (81.20)					4	111111					0.2			
Cutoff Frequency (GHz) 55.88 Corona Extinction (YRMS @ 60Hz) 1500			1						0.1					
Dielectric Withstanding (VRMS @ 60Hz) 5000				1 8	0 5	10 15 20	25 30	35 40 45	50 55	0	40 45 50			
Insertion Loss Stability (% Change) ² \$ 5 K1 per Ft(m) : K2 per Ft(m) 14.89 (0.488) : 0.07 (0.002)			1	0 5		Frequency (GH		30 33	0 5 10 15 20 25 30 35 Frequency (GHz)	40 45 50				
tes:	K1 per Ft[m]: K2 p	er Ft(m)	10	14.89 (0.488) :	0.07 (0.002)						- 1			
	muation (db/100Ft) -	K1 YF + K2F	where Fis I	Frequency in GHz	TO STATE OF STREET							ESCHINO.	-//	
2 Insertion Loss change while vibrated at a frequency of 6 Hz and an amplitude of 1 inch						Rev.	ECN #	DATE	INIT.	APPR	DVALS	64639		
3 Connect both ends of cable to flex (snake) machine. The movement of the flex machine arm					В	1950151	3/6/2019		DWN NAP	5/9/2018	INTERCONNECT TECHI	VOLOGIES		
from 36 to 18 inches, stopping, and then returning to 36 inches shall be 1 flex cycle A Not used					A HEX CYCIE					ENG JWF	3/14/2019			
Not	le assemblies of equi	al length and	connectors i	made from the same	able manufacturing lot	100				OA PIL				
Cab	shall phase track within 200 PPM of each other							bject to change. Ple pert Technologies f		CIA PIL	3/28/2019			
Cab	The second secon					Carlisle Interconnect Technologies for the latest document revision. Carlisle Interconnect Technolog				MCJ115A CABLE SPECIF				
Cab sha Tes	t Plots required with			m lengths with gating	constitution of the consti	-		cument revision. Isle Interconnect Tech		Carlisle Interconr 206 Jon		WICITISA CABLE	SPECIFICATIC	

16-Position SMPS Board-to-Board Interconnect

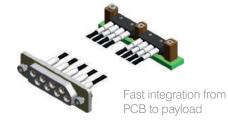
From the early 1990s' Teledesic "internet in the sky" concept to today's hundreds of LEO satellites, we have been prepared to support the market in all aspects. Our foundations of performance and quality are well established throughout the GEO satellite industry, partnering with technology leaders for more than 40 years. Pivoting from the GEO to the LEO market is an effortless transition thanks to our mature and stable global supply chain, command of logistics, engineering flexibility, and vertical integration of all satellite interconnect technologies.

All of our products are manufactured at one of our Centers of Excellence, each offering innovative packaging and adaptable configurations to reduce size, weight, and integration time. Even with its reduced life cycle, it's evident the LEO market demands the same reliable performance that has been delivered to the GEO market — but at commercial availability, volume, and pricing. And with our Carlisle Operating System (COS) guiding each of our Centers of Excellence, we are uniquely positioned to respond to that demand.


Why CarlisleIT?

- » Priced to support the high-volume/cost-driven LEO satellite market
- » Connector-to-cable termination designs that support high-volume cable assembly processing
- » Supply chain structure that stabilizes cost over yearly long-term procurement cycles
- » Multiport, quick-connect signal packaging that reduces time and complexity for the integrator without compromising reliability and performance
- » Single-point, quick-connect integration based on our patented SMP-LOK technology to support heritage flight products
- Unwavering quality standards that have been delivered for more than 40 years to the global satellite integrator and satellite equipment market

Fast Steering Mirror Sensors



New Space & Quick-Connect SMP-LOK Cable Assemblies

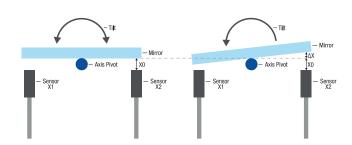
Innovated to address LEO cost targets

PCB Multiport Quick-Connect Harness

Multiport Quick-Connect Harness With Push-On Type RF Interface

Fast Steering Mirror Sensors

EDA500 Sensor-Driver System for FSM & Differential Sensing Applications

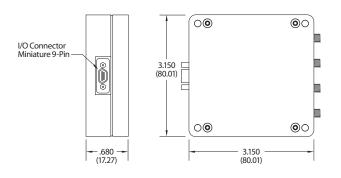

Featuring state-of-the-art Lion Precision Eddy Current Sensors, the new EDA500 controller is the ideal off-the-shelf solution for Fast Steering Mirror and differential sensing applications. The EDA500 system comes with two matched pairs of high-resolution noncontact Eddy Current Sensors, the driver with four sensor inputs (two per axis), an analog output, and a nine-pin connector interface for easy connectivity.

Designed for

- » Fast Steering Mirrors (FSM)
- » Telescope and microscope stabilization
- » Image stabilization

How It Works

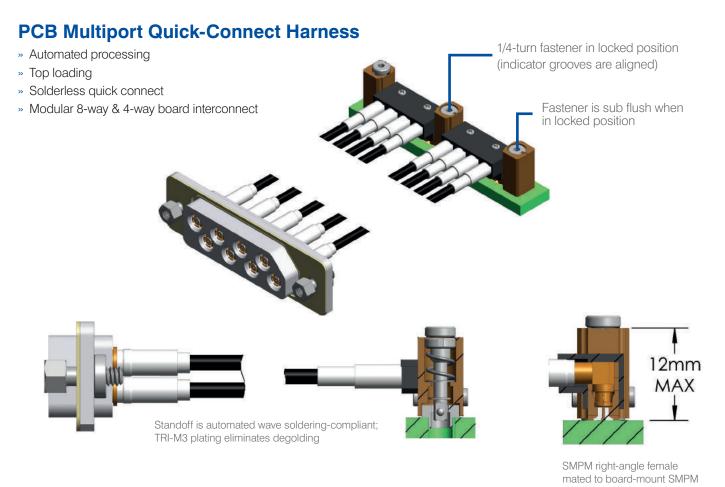
The differential system provides feedback from any change in the null position. As shown below, small changes in the tilt of the target are measured and sent to the actuator to allow fast and accurate control and positioning.



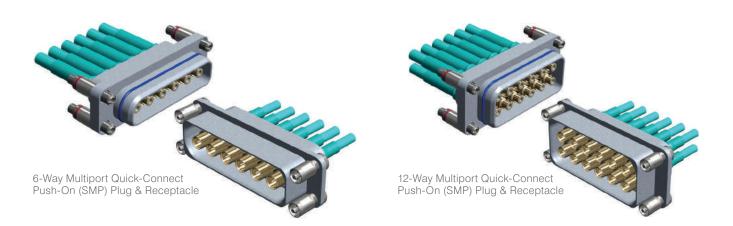
Features

- » High bandwidth
- » High resolution
- » Low power consumption
- » Excellent temperature stability
- » Matched sensor for high stability and repeatability
- » Radiation tolerant

The system can be customized for specific applications and is also available as a board without an enclosure for space savings and easy integration into a control system.


SPECIFICATIONS	
Input Voltage	±15 VDC
Power	1.0 watts
Output	\pm 5 VDC SE, opt. \pm 10 VDC diff.
Linearity Error	±0.3% F.S.
Operating Temperature	-25 °C to 55 °C
Probe Operating Environment	-25 °C to 55 °C
Weight (Electronics)	35 grams (board only)
3 (33 3 33,	157 grams (with enclosure)
Weight per Probe (1 meter)	
Weight per Probe	157 grams (with enclosure)
Weight per Probe (1 meter)	157 grams (with enclosure) 13.4 grams
Weight per Probe (1 meter) Null Gap*	157 grams (with enclosure) 13.4 grams 0.5 mm

^{*}Standard range shown; custom ranges available upon request.


New Space & Quick-Connect SMP-LOK Cable Assemblies

- » Designed to support high-volume, quick-turn cable assembly processing
- » Leveraging qualified designs supporting the GEO market for more than 20 years
- » Patented SMP-LOK Quick-Connect option transitioning from PCB to Payload interconnects
 - Reduces time and complexity for the integrator
 - Same reliability and performance as heritage SMA/SMK threaded interface
 - Unwavering quality standards that have supported the global satellite integrator and satellite equipment market for over 40 years

New Space SMP-LOK SMA plug, 205 series cable 2.92 mm (K) plug, 205 series cable

Multiport Quick-Connect Harness With Push-On Type RF Interface

Our Multiport Quick-Connect Harness with push-on type RF interface is designed to reduce time and cost for the integrator without impacting reliability or performance. And like heritage single-point threaded interfaces such as SMA and SMK, the Multiport Quick-Connect Harness supports the same critical operating frequencies, return loss, and RF shielding specifications.

We also offer:

male typ. (8x)

- » Push-on male and female connector interfaces per MIL-STD-348
- » Modular and configurable housings based on the preferred push-on type interface
- » Controlled 1/4-turn quick connect with visual lock/unlock indicator
- » Field-replaceable cable assemblies with extraction tool
- » Full range of UTiFLEX®/UTiPHASE™ cable diameters, allowing for varying insertion loss performance
- » Heat-shrink reinforcement with integration indicators and build-to-print labeling
- » Design flexibility to support 2x 12x transmission paths

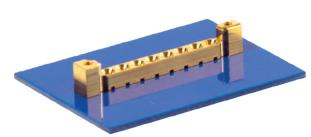
FEATURES	BENEFITS			
40 GHz operation	A single configuration to address all satellite communication bands			
19 dB return loss and -80 dB RF shielding	Offers the same high-performing RF output as single-point SMA and SMK interconnects			
Spring-loaded, locking, 1/4-turn fastener with visual lock/unlock indicator	Removes the need for controlling wrench torque and securing coupling nuts with epoxy			
Flight, TVAC, and T&M availability	No change in performance, whether it be a fully rated space flight model or test and measurement harness			

Space-Grade Assembly Processes

- » Burr-free connector components verified at 10x magnification along the entire internal and external surface area with the ability to inspect up to 1000x magnification as required
- » Connector component plating quality controls exceeding industry standards
- » Proprietary degolding processes, meeting the requirements of NASA-STD-8739.3 and J-STD-001ES
- » Thermal stabilization of components prior to assembly
- » Class 10,000 clean-room environment for the construction of spaceflight connectors and cable assemblies
 - Real-time X-ray to ensure proper connector-to-cable assembly and solder fill and workmanship to the stringent requirements of the space customer
 - 100% inspection of all electrical and mechanical requirements
 - Hand cleaning of all assemblies to include connector interfaces prior to packaging
- » ESD-safe packaging purged and backfilled with nitrogen before being heat-sealed

- » Many custom and standard connector designs available for multipactor-sensitive applications
- » Custom connector designs for multipactor applications designed in accordance with NASA, aerospace, and ESA guidelines

Radiation Resistance

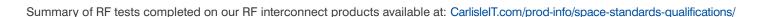

- » UTiFLEX® cable assemblies for spaceflight applications offered with FEP and TEFZEL® jackets
- » Standard UTiFLEX FEP jacketed cable designs proven to resist up to 30 Mrads of radiation and TEFZEL jacketed designs up to 100 Mrads

Minimized Passive Intermodulation Interference

- » Cable and connector materials and finishes carefully selected to minimize effects due to passive intermodulation
- » Excellent thermal stability
- » We offer a wide selection of cables that optimize loss and phase stability vs. temperature, along with excellent mechanical stability over a wide range of thermal extremes

Non-Outgassing Materials

» Our spaceflight cable assemblies are manufactured with parts and materials with a maximum Total Mass Loss (TML) of <1% or collectible volatile condensable material level of <0.1% when tested per ASTM E-595</p>


Key Product Standards

- » Electrical testing for AC, DC, RF, fiber optic-based products, including EMC
- » Mechanical testing facilities for shock, vibration, crush resistance, and flex
- » Environmental testing to various MIL-Def standards
- » Overmolding capability
- » 2D and 3D form board mockups

Operating Standards

- » Space-certified trainers and operations
 - IPC-A-620 (including space addendum)
 - IPC-J-STD-001 (including space addendum)
 - IPC-A-610
 - IPC-A-600
 - NASA-8739.1 polymetric applications
 - NASA-8739.2 surface mount
 - NASA-8739.3 J-STD-001S soldering
 - NASA-8739.4 crimping and wiring
 - NASA-8739.5 fiber optic terminations
- » Assembly test capabilities
 - X-ray, electrical length
 - Skew
 - Impedance (characteristic, differential, common mode)
 - Insertion loss, return loss/VSWR
 - TDR (time domain reflectometry)
 - Eye patter, jitter
 - Bit error rate testing (BERT) crosstalk
 - Propagation delay
 - Rise time, fall time, rise time degradation
 - Continuity/DC resistance
 - Hipot/dielectric strength

Global Manufacturing. Local Support.

Wherever you are, so are we. With manufacturing centers around the globe, our highly qualified team is up to any challenge. Our extensive worldwide manufacturing capabilities, coupled with end-to-end local project management and engineering support, allow us to design, build, test, and certify your product in-house, saving you the time and hassle of managing multiple vendors.

FACILITIES CERTIFICATIONS

HEADQUARTERS

100 Tensolite Drive St. Augustine, FL 32092 United States 1 (800) 458-9960

Visit our website to view certifications listed by site.

PRODUCT CERTIFICATIONS

Contact us directly for products engineered to your specific compliance needs.

Find us online!

www.CarlisleIT.com

Sales@CarlisleIT.com

